Energy Efficient Control and Optimisation of Distillation Column Using Artificial Neural Network
نویسندگان
چکیده
This paper presents a neural network based strategy for the modelling and optimisation of distillation columns incorporating the second law of thermodynamics. Real time optimisation of distillation columns based on mechanistic models is often infeasible due to the effort in model development and the large computation effort associated with mechanistic model computation. This issue can be addressed by using neural network models which can be quickly developed from process operation data. The computation time in neural network model evaluation is very short making them ideal for real-time optimisation. Bootstrap aggregated neural networks are used in this study for enhanced model accuracy and reliability. Aspen HYSYS was used for the simulation of the distillation systems. Neural network models for exergy efficiency and product compositions are developed from simulated process operation data and are used to maximise exergy efficiency while satisfying product quality constraints. Applications to Methanol-Water and Benzene-Toluene separation columns demonstrate the effectiveness of the proposed method.
منابع مشابه
Simulation and Control of an Aromatic Distillation Column
In general, the objective of distillation control is to maintain the desired products quality. In this paper, the performances of different one point control strategies for an aromatic distillation column have been compared through dynamic simulation. These methods are: a) Composition control using measured composition directly. This method sufferes from large sampling delay of measuring de...
متن کاملDistillation Column Identification Using Artificial Neural Network
 Abstract: In this paper, Artificial Neural Network (ANN) was used for modeling the nonlinear structure of a debutanizer column in a refinery gas process plant. The actual input-output data of the system were measured in order to be used for system identification based on root mean square error (RMSE) minimization approach. It was shown that the designed recurrent neural network is able to pr...
متن کاملModel Predictive Inferential Control of a Distillation Column
Typical production objectives in distillation process require the delivery of products whose compositions meet certain specifications. The distillation control system, therefore, must hold product compositions as near the set points as possible in faces of upset. In this project, inferential model predictive control, that utilizes an artificial neural network estimator and model predictive cont...
متن کاملHybrid Intelligent Approach for Predicting Product Compositions of a Distillation Column
Compositions measurement is a vitally critical issue for the modelling and control of distillation process. The product compositions of distillation columns are traditionally measured using indirect techniques via inferring tray compositions from its temperature or by using an online analyser. These techniques were reported as inefficient and relatively slow methods. In this paper, an alternati...
متن کاملRejection of the Feed-Flow Disturbances in a Multi-Component Distillation Column Using a Multiple Neural Network Model-Predictive Controller
This article deals with the issues associated with developing a new design methodology for the nonlinear model-predictive control (MPC) of a chemical plant. A combination of multiple neural networks is selected and used to model a nonlinear multi-input multi-output (MIMO) process with time delays. An optimization procedure for a neural MPC algorithm based on this model is then developed. T...
متن کامل